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A high-resolution scheme for low Mach number �ows
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SUMMARY

A method for computing low Mach number �ows using high-resolution interpolation and di�erence
formulas, within the framework of the Marker and Cell (MAC) scheme, is presented. This increases
the range of wavenumbers that are properly resolved on a given grid so that a su�ciently accurate
solution can be obtained without extensive grid re�nement. Results using this scheme are presented for
three problems. The �rst is the two-dimensional Taylor–Green �ow which has a closed form solution.
The second is the evolution of perturbations to constant-density, plane channel �ow for which linear
stability solutions are known. The third is the oscillatory instability of a variable density plane jet. In
this case, unless the sharp density gradients are resolved, the calculations would breakdown. Under-
resolved calculations gave solutions containing vortices which grew in place rather than being convected
out. With the present scheme, regular oscillations of this instability were obtained and vortices were
convected out regularly. Stable computations were possible over a wider range of sensitive parameters
such as density ratio and co-�ow velocity ratio. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Compressibility e�ects can be neglected in low Mach number �ows but density variations
must still be accounted for when phenomena such as combustion are present. Then the time
scale of acoustic waves is small compared to that of the hydrodynamic phenomena. An
algorithm devised for general compressible �ow will be expensive because time-steps must
be small enough to resolve the acoustic waves while the integration period must remain
large enough to capture the hydrodynamic phenomena. The chemistry time-scale must be
dealt with separately. A suitable approximation which systematically removes acoustic waves
without eliminating density variation is the low Mach number approximation proposed by
Majda and Sethian [1]. The resulting problem can be solved by a small modi�cation of the
Marker and Cell (MAC) scheme [2] for incompressible �ows. While applying this method
to study an instability in low-density plane jets, we observed that calculations would break
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down where large density di�erences appeared at the edges of the jets. Rather than resorting
to grid re�nement to improve the resolution, we replaced explicit �nite di�erence formulas
with high-resolution compact ones. The improved resolution allowed larger density gradients
to be computed without di�culty. In turn, this expanded the parameter space over which
solutions could be obtained. The solutions showed qualitative di�erences as well because
the details of evolution are dependent sensitively on resolution of �ne scales. This paper
presents this high-resolution scheme for the low Mach number equations and the improvements
obtained. Of course, this approach is useful for the special cases of variable or constant density
incompressible �ows also.
The instability and transition of variable density jets results in growth of �ow structures

over a wide range of scales. So the special care taken for direct numerical simulations (DNS)
needs to be brought to bear on these problems also. The primary di�erence is that DNS
for turbulence is necessarily three-dimensional whereas the present stability problem is two-
dimensional. Spectral methods are the natural choices because of their high e�ciency: dis-
cretization error decreases exponentially as the grid is re�ned, phase errors are very small,
and fast computations using FFTs are possible. However, being global functions, the classes
of problems which can be solved are restricted to those in simple geometries whereas �nite-
di�erence (FD) methods are much more amenable to general geometries. An explicit FD
approximation to a derivative depends on function values at neighbouring points and may
be constructed to any desired degree of accuracy, but with increased stencil size. Another
way of improving the accuracy of a �nite-di�erence solution while retaining the advantage of
applying arbitrary boundary conditions is to use the implicit FD methods which were made
popular by Lele [3]. These methods are also called compact di�erences because the stencils
are smaller than those for explicit methods of the same truncation error. Lele [3] showed that
implicit approximations for derivatives, interpolation or �ltering have higher resolving power:
The numerical approximation remains close to the exact result for a larger range of scales
compared to explicit formulas and thus recovers the advantages of spectral methods. These
are also global methods and less �exible than schemes which use explicit di�erence formulas
but do allow boundary conditions to be changed easily.
The order of accuracy, which is the order of the truncation error obtained from a Taylor

series analysis of a numerical approximation, tells us how solutions can improve as the grid is
re�ned. A higher-order scheme will deliver better solutions faster as the grid is re�ned. Either
grid-re�nement or increasing the order of the truncation error of the scheme when using the
same grid can improve the accuracy with which a �xed scale is computed. Compact di�erence
methods o�er another way to improve the resolution of a �xed scale at the same truncation
error and on the same grid. Coe�cients of the truncation error of compact di�erence formulas
are smaller as well. So such schemes are more e�cient. This is especially important in DNS
of transitional or turbulent �ows because the grids employed are usually quite large and it is
desirable to get the best solutions on a given grid rather than obtain convergence through a
sequence of grid re�nement. Lele’s [3] analyses also showed that cell-centred formulas for
derivatives o�er better resolution of high wavenumber content than formulas based on grid
values. Here we have used this idea to construct a high-resolution scheme.
There are two approaches to simulations of low Mach number �ows. One way is to begin

with the equations for compressible �ow, devise a numerical scheme and then consider mod-
i�cations to the numerical scheme when low Mach number �ows are encountered. Typically
some kind of pre-conditioning is done. A recent alternative proposal which is consistent in
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time and therefore suitable for unsteady �ows is by Sabanca et al. [4]. The other is to begin
with the equations for low Mach number �ows and adapt numerical schemes devised for
incompressible �ows to handle density variations. This second approach has been taken here.
There have been several careful studies of methods to achieve high-resolution incompressible
�ow simulations. Morinishi et al. [5] showed how to construct higher-order �nite di�erence
schemes that remain fully conservative, so that such schemes can be used for DNS. Nicoud
[6] has proposed the extension to solve the low Mach number equations. For variable density
�ows Bell and Marcus [7] had presented a method with a Godunov-type procedure to deal
with sharp gradients and the generalization for high-resolution with adaptive gridding can
be found in Reference [8]. The method presented here is distinct in that implicit di�erence
formulas are being used to provide higher resolution at a given order.
In the following sections, the formulation of the method is presented and the performance of

the method with respect to three unsteady �ows are discussed. The �rst is the two-dimensional
Taylor–Green problem which has an exact solution. It is useful for initial tests of the code.
The second is the temporal evolution of eigenmodes of plane Poiseuille �ow at constant
density for both a growing and a decaying mode. The problem for the growing mode is
especially sensitive because the eigenfunction has a rich structure near the channel walls,
and its adequate resolution is essential to obtaining an accurate growth rate. The third is the
oscillatory instability of a variable-density plane jet. In all cases the bene�ts of using the
compact scheme are evident.

2. NUMERICAL SCHEME FOR LOW MACH NUMBER EQUATIONS

The governing equations for unsteady compressible �ow are the Navier–Stokes equations.
For low Mach number �ow, it is well known that numerical integration of these equations
is computationally demanding because of the severe restriction imposed on the time step by
acoustic wave propagation which is much faster than �ow speeds. Majda and Sethian [1]
removed acoustic waves by expanding independent variables in powers of the Mach number.
Density variations are still allowed. When the essential dynamics in �ows such as low-speed
combustion is dependent on density di�erences but not compressibility this procedure improves
computational e�ciency.
Let U0; L0; �0 and T0 be a reference velocity, length, density and temperature, respectively.

The low Mach number equations were obtained [1] by expanding in powers of a small
parameter �= �M 2, where M =U0=(�RT0)1=2 is the reference Mach number and � is the speci�c
heat ratio. At zeroth order (denoted by superscript 0), the equations for conservation of mass,
momentum and energy are
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Here, velocity components ui, lengths xi, density � and temperature T have been scaled
with the reference quantities mentioned above. Pressure p was non-dimensionalized with
the reference thermodynamic pressure �0RT0 and time t by L0=U0. Summation is implied
on repeated indices. The two parameters are the Reynolds number Re=�0U0L0=�0 and the
Prandtl number Pr. Also for an ideal gas, p(0) =�(0)T (0).
According to Equation (2) pressure is uniform in space to leading order. Equation (3) can

be rewritten in the form of a constraint on the divergence of the velocity �eld

@u(0)i
@xi

=
1

�p(0)

[
�

Pr Re
@2T (0)

@xi@xi
− dp(0)

dt

]

In closed systems, the pressure may change with time whereas it remains constant in open
systems like free shear �ows considered in this paper. Then p(0) ≡ 1, and the constraint
reduces to

@u(0)i
@xi

=
1

Pr Re
@2T (0)

@xi@xi
(4)

To close the system of equations the �rst-order momentum equation is required.

@�(0)u(0)i
@t

+
@�(0)u(0)j u

(0)
i

@xj
=−@p

(1)

@xi
+
1
Re
@�(0)ji
@xj

(5)

The deviatoric part of the stress tensor �ij=(�=�0)(@ui=@xj + @uj=@xi) for a Newtonian �uid.
Solutions were obtained by integrating the system of Equations (1) and (5) subject to con-
straint (4). Transport coe�cients and speci�c heats were taken to be constants (�=�0).
Superscripts are omitted in the following discussions.
Incompressible �ows are obtained when the velocity �eld is divergence free. Then, the right-

hand side of Equation (4) is set equal to zero. Density variations in the �eld are still allowed,
and the governing equations are (1), (4) and (5). For constant density �ows, Equation (1) is
also omitted.

2.1. Time stepping

The algorithm used here is similar to that used by McMurtry et al. [9] as an extension
of the MAC scheme [2] for incompressible �ows. The essential di�erences are in use of
high-resolution formulas for spatial derivatives.
At each time step, �rst, the density was advanced by applying the second-order explicit

Adams–Bashforth formula to Equation (1). Constraint (4) was used to evaluate the second
term in Equation (1). Next, the pressure and velocity components were obtained in two steps.
Equation (5) was split into the pair of equations

�∗u∗
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where �=pn+1 − pn. Equation (6) is an explicit formula to determine �∗u∗
i . Convection

and di�usion terms (A and D) were written according to the second-order Adams–Bashforth
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formula while the pressure gradient terms were treated implicitly using second-order Crank–
Nicholson formula. Equation (7) contains unknowns un+1i and �. On taking divergence of (7)
(a discrete equivalent over cells is done in practice) and replacing @(�ui)n+1=@xi with the
density derivative from Equation (1), we get a discrete equivalent of the following Poisson
equation:

@2�
@xi@xi

=
2
�t

[
@�∗u∗

i

@xi
+
@�(n+1)

@t

]
(8)

Since the discrete gradient and divergence operations use second-order central di�erences the
second derivative of � is represented by the usual �ve-point stencil (in two dimensions) and
(�∗u∗

i ) by two-point stencils in each direction. The density derivative source term in (8) was
calculated using the second-order explicit backward di�erence formula

@�n+1

@t
=
3�n+1 − 4�n + �n−1

2�t

After the Poisson equation was solved, the velocity �eld un+1i was obtained from Equation (7).
A preconditioned conjugate gradient method was used to solve the Poisson equation. Sym-
metric successive over-relaxation was used as a preconditioner.
This procedure is known to be unstable for density variations larger than a factor of three.

However, stable computations have been demonstrated (see, for example, Reference [10] or
Reference [11]) at still larger ratios with a predictor–corrector approach which requires two
computations of the Poisson problem per time-step. Such an approach would be necessary
for treating realistic combustion problems, but has not been investigated here because the
oscillating jet problem of our interest involves smaller density ratios.

2.2. High resolution spatial discretization

Here, as in the MAC scheme [2] for incompressible �ows, the grids for velocity components
u and v, and the pressure, are staggered with respect to each other. These grids form cells with
pressure (density, temperature and any other scalars as well) located at the cell centre. Velocity
components are de�ned at midpoints of faces whose normals are aligned with the respective
component. Each component of the predictor step (6) is applied at the corresponding velocity
component gridpoint to obtain the intermediate �eld. The Poisson equation (8) is constructed
by taking divergence of Equation (7) numerically (or �nding net mass �ux into each cell).
In the MAC scheme [2] central di�erences are used for derivatives. The main di�erences in

the scheme presented below are the procedures adopted to ensure that derivatives, and in turn
the solutions, are calculated with better resolution. All derivatives of velocities or momenta
per unit volume (�ui) were computed using the high-resolution compact di�erence formulas
given below. The discrete form of the Poisson equation for � (Equation (8)) was constructed
from second-order explicit formulas for the divergence of the intermediate momentum �u∗

i and
gradient of �. Although this appears inconsistent, it is common practice since it is known that
the spatial order of accuracy of the velocity �eld is not a�ected by that of the pressure which
serves to ensure the continuity constraint [12]. An explicit study which further demonstrates
this insensitivity has been reported by Tafti [13]. In Section 3.1, we report a similar �nding.
Moreover, higher-order formulas for divergence violate an integrability constraint and can lead
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to mass sources near boundary points so that the magnitude of the error in the solution can
be larger even when the convergence rate is larger [13].

2.2.1. Implicit di�erence formulas. Lele [3] determined the resolving power of di�erence
formulas with reference to the Fourier transform derivative which is an ideal method because
this derivative is exact for all represented scales. If f̂(k)=F[f(x)] is the Fourier transform of
a function f(x), the transform of the derivative F[df=dx]= ikf̂(k), and the derivative can be
recovered exactly by inverting ikf̂(k). To compare the resolving power of a given di�erence
formula, we substitute the Fourier series expansion �f̂(k) exp(ikx) into the di�erence formula
and extract Fourier components of the derivative as ik̃(k)f̂(k) where k̃ is an equivalent, or
modi�ed, wavenumber. The di�erence between k̃ and k is a measure of the error.
Let fi denote values of f at gridpoints xi (i=0; 1; 2; : : : ; N ). Finite di�erence formulas

for derivatives at gridpoints, f′
i , are of the form

∑
j �jf

′
i+j=

∑
j �jfi+j. Explicit formulas are

obtained when coe�cients �j=0 for all j �=0. Otherwise, the formula is implicit. For these
schemes, the modi�ed wavenumber k̃ ≈ k for low wavenumbers but then falls to zero at the
highest represented wavenumber. So low wavenumber components are calculated accurately,
whereas high wavenumber content is suppressed in the derivative. We select implicit di�erence
formulas because they provide k̃ ≈ k over a larger range of k for the same order.
For the Navier–Stokes equations applied on a staggered grid, several derivatives are re-

quired. Some derivatives are at the same locations where the variables are de�ned, while
some are at o�set locations. For the solutions presented here, high-resolution formulas which
are at least fourth-order accurate at interior points were selected. Formulas were chosen such
that sizes of the stencil of the unknowns (derivatives) and the stencil of the knowns (func-
tion values) were no more than three. Then, one formula is su�cient for all interior points.
When the stencil is larger, it becomes necessary to use another formula near boundaries. A
tridiagonal system has been solved in all cases. This requires only O(N ) operations.
The implicit fourth-order formula for the collocated �rst derivative used was (�= b= c=0;

�= 1
4 in formula (2.1.6) of Lele [3])

1
4
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Cell-centred �rst derivatives were obtained from the fourth-order formula (�= b= c=0; �= 1
22

in formula (B.1.1) of Lele [3])
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f∗
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h
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Here f∗
i+1=2 is a function value at locations which are o�set by half a grid interval. Where

necessary such o�set values were obtained by high-resolution interpolation using the sixth-
order formula (corresponds to setting �= 3

10 ; �=0 in formula (C.1.4) of Lele [3])

3
10
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i−1=2 + f

∗
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3
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3
4
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1
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Figure 1. E�ective resolution characteristics of �rst derivative approximations: (a) fourth-order, compact,
cell-centred and interpolation −iD∗(k)I(k); (b) fourth-order, compact cell-centred; (c) fourth-order,

compact di�erence; and (d) exact (Fourier).

Second derivatives, for viscous terms, were obtained from the fourth-order formula (�= b=
c=0; �=1=10; a=12=10 in formula (2.2.6) of Lele [3])

1
12
f′′
i−1 +

10
12
f′′
i +

1
12
f′′
i+1 =

fi−1 − 2fi + fi+1
�x2

(12)

These derivative and interpolation formulas, (10) and (11), can be written as relations between
Fourier coe�cients: f̂∗(k)= I(k)f̂(k) and f̂′(k)=D∗(k)f̂∗(k)=D∗(k)I(k)f̂(k)= ik̃f̂(k).
For exact operations (Fourier), interpolation I(k)=1 and D∗(k)I(k)= ik. Curve a in
Figure 1 shows the e�ective resolution resulting from combining interpolation formula (11)
with di�erence formula (10) the represented wavenumber range 0¡k¡N=2 when N is the
number of intervals per period (taken as 2	 here). Interpolation reduces the modi�ed wavenum-
ber of the cell-centred compact formula (curve b) at the high wavenumber end but remains
slightly better than the standard fourth-order compact formula (curve c). Exact Fourier dif-
ferentiation is the straight line k̃= k (curve d). Resolution characteristics of formula (12) for
the second derivative can be found in Reference [3].
The implicit formulas (10)–(12) are closed with end conditions. These are boundary equa-

tions which close the implicit formulas and not boundary conditions of the �ow. For interpo-
lation the boundary equation used was the implicit third-order formula 3f∗

1=2 +f
∗
3=2 =f0 + 3f1.

Here, subscript 0 denotes a boundary location. For derivatives, we have used the third-
order formula 11f′

1 +f
′
2 = (−8f∗

1=2 + 16f
∗
3=2 − 8f1)=h, generally, and the second-order formula

f′
1 = (f

∗
3=2 −f∗

1=2)=h for derivatives of the cross term uv. For second derivatives, the boundary
equation was the third-order explicit formula f′′

1 = (11f0 − 20f1 + 6f2 + 4f3 − f4)=12h2.
The improved resolution o�ered by the compact di�erencing scheme leads to an increased

possibility of aliasing error. Aliasing error becomes most prominent when the shorter length
scales are marginally resolved and is dependent on aspects of the particular problem. One way
to control aliasing error is to use �ltering [3]. In the present simulations no explicit de-aliasing
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algorithm has been used, but the discretization does provide for high wavenumber �ltering (see
Figure 1). It is known that discretizations of di�erent forms of the advection terms result in
di�erent aliasing errors. In Equation (5), the convective terms are written in the conservative
form @(�ujui)=@xj. Alternate forms are called the non-conservative form �uj@ui=@xj, and the
skew-symmetric form 1

2 @�ujui=@xj +
1
2 �uj@ui=@xj +

1
2 ui@(�uj)=@xj. For incompressible �ow,

aliasing error for the conservative and non-conservative forms are of opposite signs [14]. So
the skew-symmetric form has been recommended to keep aliasing errors small. As a part of
the present studies, the conservative, non-conservative and skew-symmetric forms have all
been tested. Although there are di�erences between the solutions on a given grid, all forms
converged to the ‘correct’ solutions as grids were re�ned.

3. NUMERICAL SOLUTIONS

Three problems are considered to assess di�erent aspects of the proposed high-resolution
method. The �rst is the Taylor–Green �ow in two dimensions, which is an incompressible,
doubly periodic �ow with a simple closed form solution. The second is the linear instabil-
ity stage of incompressible �ow between parallel plates. This is a particularly sensitive test
because the eigenfunction has a rich structure very close to the plates. To obtain even a
qualitatively correct solution requires good resolution. The third case is the variable density
plane jet �ow which motivated this study.

3.1. Taylor–Green problem

The Taylor–Green �ow is a doubly periodic array of two-dimensional vortices of alternating
sense given by

u(x; y; t) =− cos kx sin ky exp(−2k2t=Re)

v(x; y; t) = sin kx cos ky exp(−2k2t=Re)

p(x; y; t) =− 1
4 (cos 2kx + cos 2ky) exp(−4k2t=Re)

for any wavenumber k. The non-linear terms balance the pressure exactly. So there is only a
viscous decay and no growth of harmonics. With the solution at t=0 as the initial condition,
solutions at subsequent times were found on a square of side 2	. Periodic boundary conditions
were applied in both x and y directions. The present, compact di�erence scheme and the
second-order, explicit di�erence scheme (MAC) were used.
Following Yang et al. [15] who took this �ow to assess the performance of a convolu-

tion algorithm, we simulated at several Reynolds numbers Re=102; 104; 106 and 1010 and
wavenumbers k=1; 2 and 5 on the same grid of 32× 32 cells. The time step was �t=0:001.
The L∞ error of the u-component for a meaningful subset of these simulations (Re=102; 104

and k=1; 5) are listed in Table I. Also listed are data from Yang et al. [15] of their calcula-
tions with a Fourier pseudospectral method. At higher Re the solution changes little and the
methods give nearly the same results. As is evident in the tables, the errors in the solutions
with the compact scheme are about two orders of magnitude smaller than those with the
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Table I. L∞-error of velocity component u in numerical solutions of the two-dimensional
Taylor–Green �ow. The pseudospectral results are from Yang et al. [15].

k Re t Psuedospectral Second-order explicit Fourth-order compact

1 102 1 1:95E − 10 6:26E − 05 1:21E − 07
10 1:52E − 10 5:23E − 04 1:01E − 06
20 1:15E − 10 8:57E − 04 1:65E − 06
30 8:68E − 11 1:05E − 03 2:03E − 06

1 104 1 7:91E − 13 6:39E − 07 1:23E − 09
10 7:59E − 12 6:37E − 06 1:23E − 08
20 1:48E − 11 1:27E − 05 2:46E − 08
30 2:23E − 11 1:90E − 05 3:68E − 08

5 102 1 6:95E − 08 2:39E − 02 1:21E − 03
10 1:40E − 10 3:19E − 03 1:36E − 04
20 3:79E − 12 5:32E − 05 1:85E − 06

5 104 1 1:18E − 11 3:85E − 04 1:98E − 05
10 1:38E − 06 3:69E − 03 1:89E − 04

100

100

101 102

10-2

10-4

10-6

10-8

103

N

er
ro

r

slope = -2

slope = -4

Figure 2. Convergence with grid re�nement for di�erent ways of calculating velocity derivatives.
Divergence and pressure gradient constructed using the second-order central di�erences in all cases.◦: second-order central di�erences; : fourth-order explicit formula; �: fourth-order implicit formula.

explicit scheme. The spectral method is certainly much better since the resolution is also much
better.
Since this is a periodic �ow, the spatial discretization formulas remain the same everywhere

and convergence with grid re�nement can be examined easily. Figure 2 shows the fall in
L∞ error of the u-component with grid re�nement for three spatial discretization schemes.
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Here k=1, Re=100 and the solutions are at t=1. One is with second-order formulas for all
derivatives (standard MAC scheme). The second has fourth-order explicit formulas for velocity
derivatives of the momentum equations and the third has fourth-order compact di�erences.
In all three cases, the divergence of the velocity �eld and the gradient of the pressure were
constructed using the second order central di�erence formula. Figure 2 shows that the order of
spatial accuracy follows that taken to discretize the velocity derivatives and that the magnitude
of the error is smaller when compact di�erences are used.

3.2. Temporal evolution of small disturbances on Poiseuille �ow

This is a demonstration of both resolving power and long-time accuracy. Standard linear
stability analysis of Poiseuille �ow provides eigenfunctions which can be added as a small
perturbation to the base �ow. The evolution of this perturbed �ow obtained using a numerical
scheme can be compared against the linear stability solution to assess properties of the nu-
merical scheme. We consider both a decaying mode and a growing mode. The decaying mode
is a mild test of resolution because the eigenfunction has a simple structure. Resolution error
can cause a substantial departure for the growing mode because the eigenfunction has a rich
structure near channel walls [16]. Even what may be considered reasonable grid clustering
may not be adequate. Malik et al. [17], who had used Chebychev points, needed far more
grid points compared to Rai and Moin [18] who had used a grid with spacing which grew as
a geometric progression. Both had used �nite-di�erence discretizations. So, this is a suitable
test to demonstrate the bene�ts of using a high-resolution scheme.
According to linear stability analysis for Poiseuille �ow [19], at a Reynolds number of 7500

based on channel width and centreline velocity, the eigenfunction for wavelength �=1 has a
frequency !r =0:24989154 and growth rate of !i=0:00223498. Similarly, at Re=1000, and
unit wavelength, the frequency is !r =0:34628486 and growth rate is !i=−0:04212829. A
sequence of computations at constant density and at these two Reynolds numbers were carried
out. The �ow is periodic in the streamwise co-ordinate x and no-slip boundary conditions are
applied at channel walls. The initial condition is the parabolic steady �ow solution plus the
relevant eigenfuction of small amplitude (about 0.1% of the steady �ow centreline velocity).
Results of computing the decaying solution at Re=1000 with three di�erent schemes are

shown in Figure 3. The standard MAC scheme (second-order explicit), a second scheme
which used the fourth-order explicit di�erence formula for derivatives, and the present com-
pact scheme (also of fourth order) were used. The grid had 16 points over one period along
the channel and 16 points across. Clearly, the decay rate is closer to the exact value
as the resolution of the scheme improves from second-order explicit to fourth-order explicit.
The compact scheme provides a closer result. For completeness the solution using the compact
scheme on a 32× 32 grid is shown; it is essentially the same as the linear stability result.
Note that the perturbation energy falls to quite small values but it is not contaminated by any
kind of round-o� error.
Figure 4 shows the evolution of perturbation energy for the growing mode at Re=7500

for about eight time periods. All computations have 32 points per period along the channel.
Solutions with the second-order explicit scheme are qualitatively wrong (energy falls) on the
grids with 32 or 64 points across the channel. However, with 128 points, a positive growth rate
is obtained. A similar result was obtained before [17]. With the fourth-order explicit method,
the growth rate becomes positive when 64 points are used. The results with the compact
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Figure 3. Evolution of energy of decaying mode of Poiseuille �ow at Re=1000.
E�ect on simulation of di�erent schemes compared with Orr–Sommerfeld (exact)
solution. All except one case obtained on 16× 16 grid. —, second-order explicit dif-
ferences; – – –, fourth-order explicit di�erences; — - —, compact scheme; •, compact

scheme on 32× 32 grid; —, exact.

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8
ωrt/2π

ln
 (

E
/E

0)

Figure 4. Growth of energy of growing mode of Poiseuille �ow at Re=7500. E�ect on simulation of
di�erent schemes compared with Orr–Sommerfeld (exact) solution. —◦—, second-order explicit 32× 32
grid; —•—, second-order, 32× 64; – – –, second-order, 32× 128; — –, fourth-order explicit 32× 32;

— –, fourth-order, 32× 64; —�–, compact 32× 32; —�–, compact, 32× 64; —, exact.

scheme illustrate the clear bene�t of a high-resolution scheme. With 32 points itself, the
solution is clearly better than even the fourth-order explicit scheme with 64 points. And with
64 points the solution is very nearly equal to the linear stability result. As can be expected,
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the correct result can be obtained at the 32-point resolution itself when using a Chebyshev
spectral method, since it has even better resolution characteristics [17].
All these solutions were obtained using the skew-symmetric form for the non-linear terms.

The conservative form shows a growth rate which is smaller than the exact rate and converges
from below as the grid is re�ned. The non-conservative form converges from above. Since
the errors in the two are of opposite signs, but not equal in magnitude, the skew-symmetric
form gives a closer result for a given grid but oscillates while approaching the exact result.
These two examples also emphasize the idea that the bene�ts of a high-resolution scheme

will be realized only when solution structure has �ne scales. In some cases, as in the decaying
mode problem, grid re�nement may be su�cient. In others, especially in three-dimensional
computations, su�cient grid re�nement may not even be possible. Further, although the higher-
order explicit formula also provided some improvement in resolution, the compact scheme of
the same order provided still further improvement and is, therefore, a more e�cient scheme.

3.3. Unstable, variable-density, plane jet

The high-resolution method presented above was developed to study self-sustained oscillations
of low density jets. It has been observed that oscillations appear in round jets when the ratio
of jet to ambient �uid density drops below a critical value. It is observed in helium jets
exhausting into air, heated jets, whether buoyant or not, and also plane jets (see Reference [20]
for a plane jet experiment). The phenomenon is due to density variations rather than due to
compressibility e�ects of high speed �ows. Initial computations of plane jets using a standard
method [9] reproduced self-sustained oscillations, but the �ow �elds seemed incorrect: jet-
boundary shear layers rolled up into vortices but, as these vortices traveled downstream, they
slowed down and grew considerably bigger. Wiggles appeared in some regions indicating
loss of resolution. On comparing with solutions obtained with the high-resolution method, it
appears that these are O(1) errors which accumulate. So the improvement is important because
it is not a small quantitative di�erence but is qualitative as well.
We consider symmetric solutions (seen in experiments [20]) of the plane jet �ow which are

determined by the velocity and density pro�les at the in�ow plane. The streamwise velocity
component and density were

u(x=0; y)=
1
2

[
1


+ tanh

(
2
�!
(y − y0)

)]
(13)

�(x=0; y)=
1
2

[
1

′ + tanh

(
2
�!
(y − y0)

)]
(14)

The jet velocity at the centreline is Uj and velocity far from the jet when there is a co-�ow
is Ua. In Equation (13) 
=(Uj −Ua)=(Uj +Ua) is a measure of the intensity of shearing, �!
is the shear layer vorticity thickness and the centre of the shear layer is at y=y0. Similarly,
in Equation (14), the density pro�le is characterized by the parameter 
′=(R − 1)=(R + 1)
where R=�j=�a is the jet to ambient �uid density ratio. No initial or in�ow perturbations were
imposed. Oscillations appeared spontaneously when the density ratio R¡0:9, approximately,
as in experiments. For a uniform density �ow (R=1), perturbations at the in�ow plane will
cause the jet shear layers to roll up into vortices, but this instability disappears—vortices are
convected out—when in�ow perturbations are turned o�.
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A slip boundary condition was prescribed along the lateral planes to mimic freestream
conditions. Prescribing out�ow boundary conditions is always a sensitive issue in a spatially
developing, unsteady �ow. The boundary condition should be consistent with the physical
processes of the �ow. Since the out�ow plane is a truncation of the jet, some error due to
this truncation can be expected. The aim in such a situation would be to ensure that �ow
structures leaving the computational domain should do so with minimal distortion and without
re�ections travelling to every part of the computational domain. Here, the advective boundary
condition,

@�ui
@t

+Ue
@�ui
@x

=0

was used along the out�ow plane as in Reference [21]. Additionally, a correction was applied
along the out�ow plane to ensure overall mass balance [11]. Also, the location of the out�ow
boundary was progressively taken farther away and the frequency of oscillation was monitored.
With velocity di�erence across the jet shear layer as the velocity scale and vorticity thick-

ness at in�ow as the length scale (�!=1), simulations were conducted at Reynolds number
Re=570 and Prandtl number Pr=0:7. The Reynolds number based on initial jet width y0 = 8
is then Rey0 = 4560.
The computational domain was a rectangle 120 units long in the streamwise direction and 40

units in the transverse direction on one side of the jet centreline. A uniform grid of 480× 320
points gives a good solution with the present high-resolution scheme. On a coarse grid of
240× 160 points, the lack of resolution shows up as wiggles. With the standard, second-order
explicit scheme, even with a �ner grid of 720× 480 points the solution is not well-resolved
everywhere.
On the coarse grid, computation time was roughly the same for both schemes. Most of the

time was spent in the pressure solver which took slightly longer with the explicit scheme.
Computation time increased slightly faster than linearly with grid re�nement. CPU-time for
the compact scheme on the medium grid is 4.2 times longer than on the coarse grid. With
the explicit scheme the increase is 5.7 times. From medium to �ne grid (explicit scheme) the
increase is 2.5 times though the grid points increase only 2.25 times.
Figures 5(a) and (b) show density contours from simulations on the medium grid. The loss

of resolution appears as wiggles in Figure 5(a). The rolled up vortex is also considerably
larger and moves out slowly. Figures 6(a) and (b) show density distributions averaged over a
few cycles of the oscillations. The di�erence in spreading is evident. The improved resolution
also means that simulations are possible for a smaller density ratio. The density ratio could
be as low as 0.5 without the calculations being unstable; the velocity ratio (Uj=Ua) could be
as high as 40. In Figures 5 and 6 the jet to ambient velocity ratio is 39 and density ratio is
0.76.
To examine the convergence of these solutions with mesh re�nement, magnitudes of

the cosine transforms of the streamwise velocity component have been plotted in Figure 7.
The velocity data was taken at x=90 and at t=160. The transforms were normalized
so that the magnitude is unity at k=2, and then for clarity, the curves were o�set verti-
cally by multiplying with suitable powers of 10. On the coarse grid (240× 160) the spectra
do not decay su�ciently fast at high wavenumbers with either scheme indicating that a larger
wavenumber range is required. With the compact scheme and medium grid (480× 320) a bet-
ter fall o� at high wavenumbers through several decades can be seen. With the second-order
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Figure 5. Density contours at an instant from simulation of unstable, variable density plane jet:
(a) second-order explicit di�erencing; and (b) present scheme.

Figure 6. Time-averaged density contours from simulation of unstable, variable density plane jet:
(a) second-order explicit di�erencing; and (b) present scheme.
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Figure 7. Magnitudes of cosine transform of streamwise velocity component at x=90. Data have been
normalized with the value at k =2 and then multiplied by factors of 10 for clarity. ——, compact,
coarse grid (240× 160); —, compact, medium grid (480× 320); – – –, second-order explicit, coarse
grid; - - -, second-order explicit, medium grid; · · · · · ·, second-order explicit, �ne grid (720× 480).
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Figure 8. Mean density pro�les at x=90. ——, compact, coarse grid (240× 160); —, compact, medium
grid (480× 320); – – –, second-order explicit, coarse grid; - - -, second-order explicit, medium grid;

· · · · · ·, second-order explicit, �ne grid (720× 480).

scheme this fall o� is seen only with the �ner grid. But, once the solution is correctly re-
solved, the fall o� with the second-order and compact schemes are similar. Note that these are
from instantaneous pro�les (which the method must resolve) and do not coincide. The e�ect
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of under-resolution is not a mere clipping of a correct spectrum, but a wrong spectral distri-
bution. In physical space this shows up as wiggles. The convergence of the mean �ow can be
seen in Figure 8. Mean density pro�les at x=90 taken from the same �ve computations have
been plotted. Coarse grid solutions are not very di�erent from the �ner grid solutions over
a part of the interface between light and heavy �uid. The di�erences are largely towards the
outer edge of the jet (as can be inferred from Figures 5 and 6). These excursions at the outer
edge disappear on the medium grid with the compact scheme and on the �ne grid solution
with the explicit scheme.

4. CONCLUSIONS

In this paper, some observations made in the course of developing an algorithm for low
Mach number �ow were presented. Spatial derivatives were obtained using implicit di�erence
formulas which have better resolving power allowing a larger range of scales to be computed
accurately. The test of channel �ow linear instability clearly illustrates the bene�cial e�ects of
the high-resolution scheme. For the unstable, low density jet, the compact scheme was able
to capture sharp density gradients without spurious oscillations. Solutions remained smooth
and stable computations over a wider range of sensitive parameters such as density ratio and
co-�ow velocity ratio were obtained.
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